Telegram Group & Telegram Channel
🖥 less_slow.py — Python, который не тормозит

Многие считают Python медленным, но это не всегда правда.
Ash Vardanyan в рамках проекта Less Slow показывает, как писать быстрый и эффективный код даже на Python — без магии, но с пониманием.

🐍 Что в проекте:
🔹 pandas vs polars — что быстрее при работе с миллионами строк
🔹 Использование Numba, Cython, PyO3, rust bindings
🔹 Работа с нативными типами, векторизация и zero-copy
🔹 Сериализация без боли: сравнение MessagePack, Arrow, Parquet
🔹 Сравнение аллокаторов, подходов к I/O и нагрузочным тестам
🔹 Ускорение парсинга JSON: orjson, yyjson, simdjson, ujson
🔹 Как обойти GIL и не платить за удобство интерпретатора

📦 Библиотеки и техники:
Numba, Cython, cffi, maturin
simdjson, orjson, polars
pyarrow, msgspec, blosc2, memoryview
Работа с mmap, zero-copy, JIT-компиляция, py-spy, perf

📈 Кому подойдёт:
Тем, кто пишет ETL, пайплайны или ML/AI обработку

Кто работает с большими объёмами данных или бинарными файлами

Кто хочет “оптимизировать до безобразия” и понять, как работает Python под капотом

В серии есть еще 2 крутых проекта:

🖥 less_slow.cpp — C++ без тормозов: ассемблер, кеши, SIMD, аллокации, парсинг JSON и трюки с памятью
👉 github.com/ashvardanian/less_slow.cpp

👣 less_slow.rs — продвинутый Rust: сравнение async/sync, SIMD, кеш-френдли структуры, быстрые сериализации
👉 github.com/ashvardanian/less_slow.rs


📚 Репозиторий:

💡 Даже если ты не используешь всё это каждый день — ты точно станешь писать лучший Python-код.

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/pythonl/4766
Create:
Last Update:

🖥 less_slow.py — Python, который не тормозит

Многие считают Python медленным, но это не всегда правда.
Ash Vardanyan в рамках проекта Less Slow показывает, как писать быстрый и эффективный код даже на Python — без магии, но с пониманием.

🐍 Что в проекте:
🔹 pandas vs polars — что быстрее при работе с миллионами строк
🔹 Использование Numba, Cython, PyO3, rust bindings
🔹 Работа с нативными типами, векторизация и zero-copy
🔹 Сериализация без боли: сравнение MessagePack, Arrow, Parquet
🔹 Сравнение аллокаторов, подходов к I/O и нагрузочным тестам
🔹 Ускорение парсинга JSON: orjson, yyjson, simdjson, ujson
🔹 Как обойти GIL и не платить за удобство интерпретатора

📦 Библиотеки и техники:
Numba, Cython, cffi, maturin
simdjson, orjson, polars
pyarrow, msgspec, blosc2, memoryview
Работа с mmap, zero-copy, JIT-компиляция, py-spy, perf

📈 Кому подойдёт:
Тем, кто пишет ETL, пайплайны или ML/AI обработку

Кто работает с большими объёмами данных или бинарными файлами

Кто хочет “оптимизировать до безобразия” и понять, как работает Python под капотом

В серии есть еще 2 крутых проекта:

🖥 less_slow.cpp — C++ без тормозов: ассемблер, кеши, SIMD, аллокации, парсинг JSON и трюки с памятью
👉 github.com/ashvardanian/less_slow.cpp

👣 less_slow.rs — продвинутый Rust: сравнение async/sync, SIMD, кеш-френдли структуры, быстрые сериализации
👉 github.com/ashvardanian/less_slow.rs


📚 Репозиторий:

💡 Даже если ты не используешь всё это каждый день — ты точно станешь писать лучший Python-код.

@pythonl

BY Python/ django




Share with your friend now:
tg-me.com/pythonl/4766

View MORE
Open in Telegram


Python django Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Python django from ua


Telegram Python/ django
FROM USA